Random Thoughts about Tracking

Xin Dong Lawrence Berkeley National Laboratory

- STAR Tracking: success and limitations
- Lessons from TPC + Silicon system
- My own remarks on sPHENIX tracking

Disclaimer: Purely a view as a physicist. Minimal technical details.

STAR Tracking

<u>Offline Tracking – Sti package</u>

Hits are ordered according to layers (ordered according to radius)

Not able to perform tracking with forward station-like tracking*

Track search starting from outmost layer, propagate inwards, seeding: simple combinations or CA

After a seed is established, perform following-the-track propagation (with Kalman) inwards to add more hits

When multiple hits are inside the search window, keep all and perform tree-like search inwards, finally find the best track candidate (chi2 fit or other quality)

Tracking material built separately – consistency with GEANT

- simple geometry volumes (barrel, tube, plane etc.)

TPC + Silicon detectors/HFT (4 layers)

- using the same integrated tracking, outside-inside search means TPC tracks first then attach HFT hits to tracks

*Addressed in another tracking package – Stv

Specific Issues

Related to silicon detectors:

- 0) Standard alone tracking? Not pursued
 - only 4 layers (SSD layer has many inactive channels)
 - PXL inner layer has many background hits 30:70 (AuAu central signal hits : background hits from pileup MB and UPC)
- 1) Matching ordering: no specific order in STAR consideration: high p tracks first? primary tracks first?
- 2) Material (active + inactive) and Mis-alignment not so friendly to handle the detector mis-alignment
- 3) Noise/background hits for sPHENIX MAPS, the pileup level will be significantly reduced (4 μs vs. 186 μs)
- 4) Track silicon hit requirement default require three layer of silicon hits for background reason lose the acceptance for weak decay particles (Ks, Lambda etc.)

Vertexing:

Global tracks ->(no further tracking) primary vertex -> primary track refitting Or

Tracking for primaries first -> then re-search tracks for secondaries (may tune for weak-decays)

Hit Density on MAPS at RHIC Environment

Simulation@50kHz

		PXL inner	PXL outer
	Radius (cm)	2.8	8
)	MB pileup hits (cm ⁻²)	13	~3
	UPC electrons (cm ⁻²)	33	~3
	Total bkgd hits (cm ⁻²)	46	~6
	MB signal Au+Au (cm ⁻²)	~8	~1
	Au+Au MB real data (cm ⁻²)	~50	~5

First layer detector	MAPS @ SPHENIX	PXL at STAR
RHIC luminosity	100kHz	50kHz
Radius (cm)	2.3	2.8
Integration time (μs)	4	186
Total bkgd hits (cm ⁻²)	~2-3	46

The background hit fraction in MB triggered AuAu events can be ~30% at first layer of MAPS at sPHENIX

Remarks

- 1) Local method for track finder: Local Kalman filter or CA
 - better be parallelized, can apply the same algorithm for both offline and online?
- 2) Pay attention how to organize the tracking algorithm
 - do radial tracker finder only or want to keep the ability for future forward tracking
- 3) Given the significant difference in hit errors/material/background between TPC and silicon detectors, it is better to run tracking for TPC hits first, then connect TPC tracks to silicon hits.
 - convenient for monitoring TPC calibrations
 - allow standard alone tracking from silicon detectors
- special attention to silicon hit pattern requirement considering background level, fake match rate etc.
- 4) Track search ordering:
 - STAR's approach was before precision silicon detector era
 - may use ALICE's approach
 - high pT tracks first, primary tracks first